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APPROXIMATE DIRICHLET BOUNDARY CONDITIONS IN
THE GENERALIZED FINITE ELEMENT METHOD

IVO BABUŠKA, VICTOR NISTOR, AND NICOLAE TARFULEA

Abstract. We propose a method for treating the Dirichlet boundary condi-

tions in the framework of the Generalized Finite Element Method (GFEM).

We use approximate Dirichlet boundary conditions as in [12] and polyno-
mial approximations of the boundary. Our sequence of GFEM-spaces con-

sidered, Sµ, µ = 1, 2, . . . is such that Sµ 6⊂ H1
0 (Ω), and hence it does not

conform to one of the basic FEM conditions. Let hµ be the typical size
of the elements defining Sµ and let u ∈ Hm+1(Ω) be the solution of the

Dirichlet problem −∆u = f in Ω, u = 0 on ∂Ω, on a smooth, bounded
domain Ω. Assume that ‖vµ‖H1/2(∂Ω) ≤ Chm

µ ‖vµ‖H1(Ω) for all vµ ∈ Sµ

and |u − uI |H1(Ω) ≤ Chm
µ ‖u‖Hm+1(Ω), u ∈ Hm+1(Ω) ∩ H1

0 (Ω), for a suit-

able uI ∈ Sµ. Then we prove that we obtain quasi-optimal rates of con-
vergence for the sequence uµ ∈ Sµ of GFEM approximations of u, that is,

‖u− uµ‖H1(Ω) ≤ Chm
µ ‖f‖Hm−1(Ω). Next, we indicate an effective technique

for constructing sequences of GFEM-spaces satisfying our conditions using
polynomial approximations of the boundary. Finally, we extend our results to

the inhomogeneous Dirichlet boundary value problem −∆u = f in Ω, u = g

on ∂Ω.
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1. Introduction

In the past few years, meshless methods for the approximation of solutions of
partial differential equations have received increasing attention, especially in the
Engineering and Physics communities. The reasons behind the development of
such methods are the difficulties associated to the mesh generation, particularly
when the geometry of the domain is complicated. As in the case of the usual Finite
Element Method, one of the major problems in the implementation of meshless
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2 I BABUŠKA, V. NISTOR, AND N. TARFULEA

methods is the enforcement of Dirichlet boundary conditions. It is the purpose of
this paper to address the problem of enforcing Dirichlet boundary conditions in the
Generalized Finite Element Method framework.

The classical Rayleigh-Ritz methods for elliptic Dirichlet boundary value prob-
lems assume that the trial subspace functions fulfill the boundary conditions. Nev-
ertheless, the construction of such subspaces implies many difficulties in practice
when the boundary of the domain is curved. Therefore, several approaches are
known for dealing with the Dirichlet boundary conditions. One approach is to
modify the variational principles by adding appropriate boundary terms so that
there will be no need for the trial subspaces to fulfill any condition at the bound-
ary. See the works of Babuška [2, 3], Bramble and Nitsche [13], and Bramble and
Schatz [15, 16], among others, for examples of how this approach works in prac-
tice. Another approach (used also in this paper) is to use subspaces with nearly
zero boundary conditions. This ideea was first outlined by Nitsche [27] and further
studied by Berger, Scott, and Strang [12] and Nitsche [28].

Yet another approach is the Isoparametric Finite Element Method or IFEM with
curved finite elements along the boundary. See [19] and references therein, or [18],
[20, 22, 23, 24, 29, 30], among many others, for more recent work and applications.
This approach is typically used in connection with a numerical quadrature scheme
computing the coefficients of the resulting linear systems. In the applications of this
method, except in special cases (such as when Ω is a polyhedral domain) the interior
Ωh of the union of the finite elements is not equal to Ω, although the boundary of
Ωh is very close to ∂Ω. That is, the approximate solution uh is sought in a subspace
Vh ⊂ H1

0 (Ωh) and so, the homogeneous Dirichlet boundary condition u = 0 on ∂Ω
is “approximated” by the boundary condition uh = 0 on ∂Ωh. In fact, uh is the
solution of a variational equation ah(uh, vh) = (fh, vh)h for all vh ∈ Vh, where
ah(·, ·) is a bilinear form which approximates the usual bilinear form defined over
H1(Ωh)×H1(Ωh), and fh ∈ V ∗

h approximates the linear form vh ∈ Vh →
∫
Ωh
f̃vhdx,

where f̃ is an extension of f to the set Ωh.
Our approach has certain points in common with the isoparametric method just

mentioned in the fact that we are using polynomial approximations of the boundary.
However, our method does not require non-linear changes of coordinates. Our
method combines the approaches in the papers of Berger, Scott, and Strang [12]
and Nitsche [28]. Our definition of the discrete solution is as in [12], whereas our
assumptions are closer to those of [28]. We have tried to keep our assumptions at a
minimum. This is possible using partitions of unity, more precisely the Generalized
Finite Element Method or GFEM, a method that originated in the work of Babuška,
Caloz, and Osborn [8] and further developed in [6, 9, 10, 25, 26].

Our construction is different from the IFEM in that we do not require compli-
cated non-linear changes of coordinates. Moreover, our method uses non-conforming
subspaces of functions and it does not have to deal with extensions over larger do-
mains. It is closely related to [11] which uses GFEM for elliptic Neumann boundary
value problems with distributional boundary data. The GFEM is a generalization
of the meshless methods which use the idea of partition of unity. This method
allows a great flexibility in constructing the trial spaces, permits inclusion of a
priori knowledge about the differential equation in the trial spaces, and gives the
option of constructing trial spaces of any desired regularity. We mention that the
GFEM is also known and used under other names, such as: the method of “clouds,”
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the method of “finite spheres,” the “X–finite element method,” and others. See the
survey by Babuška, Banerjee, and Osborn [5] for further information and references.

Let us now describe the main results of this paper in some detail. Let Ω ⊂ Rn

be a smooth, bounded domain with boundary ∂Ω. Let f ∈ L2(Ω) and u ∈ H2(Ω)
be the unique solution of the Dirichlet problem

(1) −∆u = f on Ω, u = 0 on ∂Ω.

Assume that a sequence Sµ ⊂ H1(Ω) of test-trial spaces is given and define the
discrete solution uµ ∈ Sµ in the usual way: B(uµ, vµ) = (f, vµ) for all vµ ∈ Sµ

(see Equation (2) below). We do not assume Sµ to satisfy exactly the Dirichlet
boundary conditions, that is, we do not assume Sµ ⊂ H1

0 (Ω).
Let us fix from now on a natural number m ∈ N = {1, 2, . . .} that will play, in

what follows, the role of the expected order of approximation. We shall make the
following two basic assumptions:

• Assumption 1, nearly zero boundary values: ‖vµ‖H1/2(∂Ω) ≤ Chm
µ ‖vµ‖H1(Ω)

for any vµ ∈ Sµ and
• Assumption 2, approximability: for any u ∈ Hj+1(Ω) ∩H1

0 (Ω), 0 ≤ j ≤ m,
there exists uI ∈ Sµ such that |u− uI |H1(Ω) ≤ Chj

µ‖u‖Hj+1(Ω).
These two assumptions are formulated in more detail in Section 2.
Under Assumptions 1 and 2, our main approximation result (proved in Section 2)

is the following

Theorem 1.1. Let Sµ ⊂ H1(Ω) be a sequence of finite dimensional subspaces
satisfying Assumptions 1 and 2 for a sequence hµ → 0 and 1 ≤ p ≤ m. Then
the (unique) solutions u and uµ of Equations (1) and (2), respectively, with f ∈
Hp−1(Ω) satisfy

‖u− uµ‖H1(Ω) ≤ Chp
µ‖u‖Hp+1(Ω) ≤ Chp

µ‖f‖Hp−1(Ω),

for constants independent of µ and f .

In Assumptions 1 and 2, hµ > 0 is a sequence that goes to 0. Intuitively, hµ

will play the role of the “typical size” of the elements in Sµ. However, in our
abstract setting, we are not assuming that Sµ is constructed in any particular way.
Assumptions 1 and 2 are easy to fulfill with a “flat-top” partition of unity and
polynomial local approximation spaces. In Sections 3 and 4 we provide examples
of spaces Sµ that satisfy Assumptions 1 and 2. In Section 5 we extend our results
to the non-homogeneous Dirichlet boundary conditions case u = g on ∂Ω.

In this paper, we shall use the convention that C > 0 indicates a generic constant,
independent of µ, which may be different each time when used, but is independent
of the free variables of the formulas.

2. Approximate Dirichlet boundary conditions

In this section, we give a proof of Theorem 1.1. We begin by fixing the notation
and then we prove some preliminary results.

Recall that Ω ⊂ Rn is a smooth, bounded domain, fixed throughout this paper.
We shall fix in what follows m ∈ N = {1, 2, . . .}, which will play the role of the
order of approximation. We want to approximate u with functions uµ ∈ Sµ, µ ∈ N,
where Sµ ⊂ H1(Ω) is a sequence of finite dimensional subspaces that satisfy the
Assumption 1 and 2 formulated next. Our first assumption is:
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Assumption 1 (nearly zero boundary values). There exists C > 0 such
that

‖vµ‖H1/2(∂Ω) ≤ Chm
µ ‖vµ‖H1(Ω) for any vµ ∈ Sµ.

So Sµ does not necessarily consist of functions satisfying the Dirichlet boundary
conditions. Let |u|H1(Ω) := [

∫
Ω
|∇u|2dx]1/2. Our second assumption is:

Assumption 2 (approximability). There exists C > 0 such that for any
0 ≤ j ≤ m, any u ∈ Hj+1(Ω) ∩H1

0 (Ω), and any µ ∈ N, there exists uI ∈ Sµ such
that

|u− uI |H1(Ω) ≤ Chj
µ‖u‖Hj+1(Ω).

We now proceed to the proof of Theorem 1.1. We first need some lemmas. Let
Q : H1(Ω) → H1

0 (Ω) be the H1-orthogonal projection onto the subspace H1
0 (Ω) ⊂

H1(Ω) of functions satisfying the Dirichlet boundary conditions. Let S0
µ := Q(Sµ).

Lemma 2.1. We have that ‖w −Q(w)‖H1(Ω) ≤ Chm
µ ‖w‖H1(Ω), w ∈ Sµ.

Proof. Let us denote by E : H1/2(∂Ω) → H1(Ω) a fixed, continuous right inverse
of the restriction (or trace map) H1(Ω) → H1/2(∂Ω). That is, we have

(Ev)|∂Ω = v and ‖Ev‖H1(Ω) ≤ C‖v‖H1/2(∂Ω), v ∈ H1/2(∂Ω).

We can chose such an extension map E since the restriction H1(Ω) → H1/2(∂Ω)
is continuous and surjective. Consider now w ∈ H1(Ω) arbitrary. Then wE :=
w − E(w|∂Ω) ∈ H1

0 (Ω), and hence the projection property gives

‖w −Q(w)‖H1(Ω) ≤ ‖w − wE‖H1(Ω) = ‖E(w|∂Ω)‖H1(Ω) ≤ C‖w|∂Ω‖H1/2(∂Ω).

If w ∈ Sµ, Assumption 2 then gives ‖w − Q(w)‖H1(Ω) ≤ Chm
µ ‖w‖H1(Ω), as

desired. �

In what follows, we shall need the following classical result [1, 17].

Lemma 2.2. For u ∈ H1(Ω) there is a constant C that depends only on Ω such
that

‖u‖2
H1(Ω) ≤ C

[
|u|2H1(Ω) + ‖u‖2

L2(∂Ω)

]
.

From this lemma we obtain that |vµ|H1(Ω) and ‖vµ‖H1(Ω) are equivalent norms
on Sµ, with equivalence bounds independent of µ:

Lemma 2.3. There exists C > 0 such that C−1|vµ|H1(Ω) ≤ ‖vµ‖H1(Ω) ≤ C|vµ|H1(Ω)

for all µ large enough and all vµ ∈ Sµ.

Proof. From Lemma 2.2, we have

‖vµ‖2
H1(Ω) ≤ C

[
|vµ|2H1(Ω) + ‖vµ‖2

L2(∂Ω)

]
≤ C

[
|vµ|2H1(Ω) + ‖vµ‖2

H1/2(∂Ω)

]
≤ C|vµ|2H1(Ω) + Ch2m

µ ‖vµ‖2
H1(Ω),

where the last inequality is a consequence of Assumption 1. Therefore, for µ large,
hµ is small enough and we get

‖vµ‖H1(Ω) ≤ C(1− Ch2m
µ )−1/2|vµ|H1(Ω)

which is enough to complete the proof. �
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Lemma 2.3 allows us now to introduce the discrete solution uµ of Equation (1)
using the standard procedure. Let B(v, w) :=

∫
Ω
∇v · ∇wdx be the usual bilinear

form. For µ large, let us define the discrete solution uµ ∈ Sµ of the Dirichlet
problem (1) by the usual formula

(2) B(uµ, vµ) =
∫

Ω

f(x)vµ(x)dx, for all vµ ∈ Sµ.

Let ν be the outer unit normal to ∂Ω and dS denote the surface measure on ∂Ω.
Similarly, let wµ ∈ Sµ, for µ large, be the solution of the variational problem

(3) B(wµ, vµ) =
∫

∂Ω

∂νu(x)vµ(x)dS(x), for all vµ ∈ Sµ,

where u is the solution of Equation (1). Note that we need Lemma 2.3 to justify
the existence and uniqueness of weak solutions uµ and wµ.

Lemma 2.4. Let u be the solution of the Dirichlet problem (1) and let uµ and wµ

be as in Equations (2) and (3). Then B(u−uµ−wµ, vµ) = 0 for all vµ ∈ Sµ; hence

|u− uµ − wµ|H1(Ω) ≤ |u− vµ|H1(Ω) for all vµ ∈ Sµ.

Proof. This follows from the fact that

B(u, vµ) =
∫

Ω

∇u · ∇vµdx =
∫

Ω

fvµdx+
∫

∂Ω

(∂νu)vµdS(x) = B(uµ + wµ, vµ),

for all vµ ∈ Sµ. �

We now proceed to estimate uµ and wµ.

Lemma 2.5. For µ large, the solution wµ of the weak problem (3) satisfies

(4) ‖wµ‖H1(Ω) ≤ Chm
µ ‖u‖H2(Ω),

with C a constant independent of µ and u.

Proof. The relation follows from

‖wµ‖2
H1(Ω) ≤ C|wµ|2H1(Ω) = CB(wµ, wµ) = C

∫
∂Ω

∂νu(x)wµ(x)dS(x)

≤ C‖∂νu‖L2(∂Ω)‖wµ‖L2(∂Ω) ≤ C‖∂νu‖L2(∂Ω)‖wµ‖H1/2(∂Ω)

≤ Chm
µ ‖u‖H2(Ω)‖wµ‖H1(Ω).

Therefore ‖wµ‖H1(Ω) ≤ Chm
µ ‖u‖H2(Ω), as claimed. �

Lemma 2.6. For µ large, the solution uµ of the weak problem (2) satisfies

(5) ‖uµ‖H1(Ω) ≤ C‖u‖H2(Ω),

with C a constant independent of µ and u.

Proof. Let us first observe that Lemma 2.3 and then Lemma 2.4 give

‖uµ‖2
H1(Ω) ≤ C|uµ|2H1(Ω) = CB(uµ, uµ) = C

[
B(u, uµ)−B(wµ, uµ)

]
= C

[
B(u, uµ)− 〈∂νu, uµ〉∂Ω

]
≤ C

[
|B(u, uµ)|+ |〈∂νu, uµ〉∂Ω|

]
≤ C‖u‖H1(Ω)‖uµ‖H1(Ω) + C‖∂νu‖L2(∂Ω)‖uµ‖L2(∂Ω)

≤ C‖u‖H2(Ω)‖uµ‖H1(Ω) + Chm
µ ‖u‖H2(Ω)‖uµ‖H1(Ω).

Now it is easy to see that ‖uµ‖H1(Ω) ≤ C‖u‖H2(Ω). �
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Now we are ready to prove Theorem 1.1.

Proof. We shall assume p = m, for simplicity. The proof in general is exactly the
same. Lemma 2.4 and the projection property, together with Lemma 2.5, give

(6) |u− uµ|H1(Ω) ≤ |u− uµ − wµ|H1(Ω) + |wµ|H1(Ω)

≤ |u− uI |H1(Ω) + Chm
µ ‖u‖H2(Ω) ≤ Chm

µ ‖u‖Hm+1(Ω),

where for the last line we also used the approximation property (Assumption 2).
The estimate in the H1-norm is obtained from Lemma 2.2, Equation (6), As-

sumption 1, and Lemma 2.5 as follows

‖u− uµ‖H1(Ω) ≤ C
[
|u− uµ|H1(Ω) + ‖uµ‖L2(∂Ω)

]
≤ Chm

µ ‖u‖Hm+1(Ω) + Chm
µ ‖uµ‖H1(Ω) ≤ Chm

µ ‖u‖Hm+1(Ω).

The proof is now complete. �

In view of some further applications, we now include an error estimate in a
“negative order” Sobolev norm. We let H−l(Ω) to be the dual of H l(Ω) with pivot
L2(Ω). Since Ω is a smooth domain, H−l(Ω) can also be described as the closure
of C∞(Ω) in the norm

(7) ‖u‖H−l(Ω) = sup
φ6=0

|(u, φ)L2(Ω)|
‖φ‖Hl(Ω)

(Note that, in several other papers, H−l(Ω) denotes the dual of H l
0(Ω).)

Theorem 2.7. Let 0 ≤ l, 1 ≤ p, and l+p+1 ≤ m. Then, under the assumptions of
Theorem 1.1, the solutions u and uµ of Equation (1) and Equation (2), respectively,
satisfy

‖u− uµ‖H−l(Ω) ≤ Chl+p+1
µ ‖u‖Hp+1(Ω),

for a constant C > 0 independent of µ and f ∈ Hp−1(Ω).

Proof. The proof of this theorem is an adaptation of the usual Nitsche-Aubin
trick. Indeed, let us denote by F ∈ H l+2(Ω) the unique solution of the equation
−∆F = φ, F = 0 on ∂Ω, for φ ∈ H l(Ω) arbitrary, non-zero. Then there exists
a constant C > O, independent of φ, such that ‖F‖Hl+2(Ω) ≤ C‖φ‖Hl(Ω). By
Assumption 2, there exists FI ∈ Sµ such that |F − FI |H1(Ω) ≤ Chl+1

µ ‖F‖Hl+2(Ω).
An easy observation, which will be used later, is that

(8) |FI |H1(Ω) ≤ Chl+1
µ ‖F‖Hl+2(Ω) + |F |H1(Ω) ≤ C‖φ‖Hl(Ω).
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Using Lemmas 2.1, 2.5, and 2.6, together with Assumptions 1–2 and (8), we
obtain

‖u− uµ‖H−l(Ω) = sup
φ6=0

|(u− uµ, φ)L2(Ω)|
‖φ‖Hl(Ω)

= sup
φ6=0

∣∣B(u− uµ, F ) +
∫

∂Ω
uµ∂νFdS

∣∣
‖φ‖Hl(Ω)

≤ sup
φ6=0

|B(u− uµ, F − FI)|
‖φ‖Hl(Ω)

+ sup
φ6=0

|B(wµ, FI)|
‖φ‖Hl(Ω)

+ sup
φ6=0

∣∣ ∫
∂Ω
uµ∂νFdS

∣∣
‖φ‖Hl(Ω)

≤ sup
φ6=0

|u− uµ|H1(Ω)|F − FI |H1(Ω)

‖φ‖Hl(Ω)

+ sup
φ6=0

|wµ|H1(Ω)|FI |H1(Ω)

‖φ‖Hl(Ω)

+ sup
φ6=0

‖uµ‖L2(∂Ω)‖∂νF‖L2(∂Ω)

‖φ‖Hl(Ω)

≤ Chp+l+1
µ ‖u‖Hp+1(Ω) + Chm

µ ‖u‖H2(Ω) + Chm
µ ‖u‖H2(Ω)

≤ Chp+l+1
µ ‖u‖Hp+1(Ω),

by the assumption that p+ l + 1 ≤ m. �

3. The Generalized Finite Element Method

Our goal is to construct a sequence Sµ, µ = 1, 2, . . ., of Generalized Finite
Element spaces that satisfy the two assumptions of the previous section. To this
end, we shall introduce a sequence of Generalized Finite Element spaces that satisfy
certain conditions (Conditions A(hµ), B, C, and D). In the following sections we
shall prove that these conditions imply Assumptions 1 and 2.

We begin by recalling a few basic facts about the Generalized Finite Element
Method [5, 10, 26]. This method is quite convenient when one needs test or trial
spaces with high regularity.

3.1. Basic facts. Let k ∈ Z+. We shall denote as usual

|u|W k,∞(Ω) := max
|α|=k

‖∂αu‖L∞(Ω), ‖u‖W k,∞(Ω) := max
|α|≤k

‖∂αu‖L∞(Ω),

W k,∞(Ω) := {u, ‖u‖W k,∞(Ω) < ∞}, and ‖∇ω‖W k,∞(Ω) :=
∑

j ‖∂jω‖W k,∞(Ω). In
particular, |u|W 0,∞(Ω) = ‖u‖W 0,∞(Ω) = ‖u‖L∞(Ω).

We shall need the following slight generalization of a definition from [10, 26]:

Definition 3.1. Let Ω ⊂ Rn be an open set and {ωj}N
j=1 be an open cover of Ω

such that any x ∈ Ω belongs to at most κ of the sets ωj . Also, let {φj} be a partition
of unity consisting of Wm,∞(Ω) functions and subordinated to the covering {ωj}
(i.e., suppφj ⊂ ωj). If

(9) ‖∂αφj‖L∞(Ω) ≤ Ck/(diamωj)k, k = |α| ≤ m,

for any j = 1, . . . , N , then {φj} is called a (κ,C0, C1, . . . , Cm) partition of unity.

Assume also that we are given linear subspaces Ψj ⊂ Hm(ωj), j = 1, 2, . . . , N .
The spaces Ψj will be called local approximation spaces and will be used to define
the space

(10) S = SGFEM :=
{ N∑

j=1

φjvj , vj ∈ Ψj

}
⊂ Hm(Ω),
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which will be called the GFEM–space. The set {ωj , φj ,Ψj} will be called the set of
data defining the GFEM–space S. A basic approximation property of the GFEM–
spaces is the following Theorem from [10].

Theorem 3.2 (Babuška-Melenk). We shall use the notations and definitions of
Definition 3.1 and after. Let {φj} be a (κ,C0, C1) partition of unity. Also, let
vj ∈ Ψj ⊂ H1(ωj), uap :=

∑
j φjvj ∈ S, and dj = diamωj, the diameter of ωj.

Then

(11)

‖u− uap‖2
L2(Ω) ≤ κC2

0

∑
j

‖u− vj‖2
L2(ωj)

and

‖∇(u− uap)‖2
L2(Ω) ≤ 2κ

∑
j

( C2
1‖u− vj‖2

L2(ωj)

(dj)2
+ C2

0‖∇(u− vj)‖2
L2(ωj)

)
.

3.2. Conditions on GFEM data defining Sµ. Recall that ω is star-shaped with
respect to ω∗ ⊂ ω if, for every x ∈ ω and every y ∈ ω∗, the segment with end
points x and y is completely contained in ω. Also, recall that we have fixed an
integer m that plays the role of the order of approximation. Let {ωj , φj ,Ψj}N

j=1

be a single, fixed data defining a GFEM–space S, as in the previous subsection,
and let Σ := {ωj , φj ,Ψj , ω

∗
j }, where ωj is star-shaped with respect to ω∗j ⊂ ωj . We

shall need, in fact, to consider a sequence of such data

(12) Σµ = {ωµ
j , φ

µ
j ,Ψ

µ
j , ω

∗µ
j }Nµ

j=1, µ ∈ N,
defining GFEM–spaces Sµ

(13) Sµ :=
{ Nµ∑

j=1

φµ
j vj , vj ∈ Ψµ

j

}
⊂ Hm(Ω),

such that there exist constants A, Cj , σ, and κ and a sequence hµ → 0, as µ→∞,
for which Σµ satisfies Conditions A(hµ), B, C, and D below for µ ∈ N.

Condition A(hµ). We have that Ω = ∪Nµ

j=1ω
µ
j and for each j = 1, 2, . . . , Nµ, the

set ωµ
j is open of diameter dµ

j ≤ hµ ≤ 1 and ω∗µj ⊂ ωµ
j is an open ball of diameter

≥ σdµ
j such that ωµ

j is star-shaped with respect to ω∗µj .

Notice that we only assume the open covering {ωµ
j } to be nondegenerate, a

weaker condition than quasi-uniformity (see [17], Section 4.4, for definitions and
more information on these notions).

Condition B. The family {φµ
j }

Nµ

j=1 is a (κ,C0, C1, . . . , Cm) partition of unity.

The following condition defines the local approximation spaces Ψµ
j . To formulate

this condition, let us choose xj ∈ ωµ
j ∩ ∂Ω, if the intersection is not empty. We

can assume that linear coordinates have been chosen such that xj = 0 and the
tangent space to ∂Ω at xj is {xn = 0} = Rn−1. For hµ small, we can assume
that ωµ

j ∩ ∂Ω is contained in the graph of a smooth function gµ
j : Rn−1 → R. If

x = (x1, x2, . . . , xn) ∈ Rn, then we shall denote x′ = (x1, x2, . . . , xn−1) ∈ Rn−1, so
that x = (x′, xn). Let qµ

j : Rn−1 → R be a polynomial of order m such that

(14) |gµ
j (x′)− qµ

j (x′)| ≤ C(dµ
j )m+1 and

|∇gµ
j (x′)−∇qµ

j (x′)| ≤ C(dµ
j )m for all (x′, xn) ∈ ωµ

j .



DIRICHLET PROBLEM 9

This condition is satisfied, for instance, if ∂αgµ
j (0) = ∂αqµ

j (0), for all |α| ≤ m. In
this case, the m-degree polynomial qµ

j : Rn−1 → R is uniquely defined by the afore
mentioned requirement.

Next, denote by q̃µ
j : Rn → Rn the bijective map

(15) q̃µ
j (x) = q̃µ

j (x′, xn) = (x′, xn + qµ
j (x′)).

Let us denote by Pk the space of polynomials of order at most k in n variables.

Condition C. We have Ψµ
j = Pm if ωµ

j ∩ ∂Ω = ∅ and, otherwise,

Ψµ
j = {p ◦ (q̃µ

j )−1, p ∈ Pm, such that p(x′, 0) = 0},

where qµ
j are polynomials satisfying Equation (14) with a constant C independent

of j and µ.

An equivalent form of the condition “p ∈ Pm, p(x′, 0) = 0” is “p = xnp1,
p1 ∈ Pm−1,” because any polynomial vanishing on the hyperplane {xn = 0} is
a multiple of xn. Since (q̃µ

j )−1(x′, xn) = (x′, xn − qµ
j (x′)), we obtain p(x′, xn) =

(xn − qµ
j (x′))p1 ◦ (q̃µ

j )−1.

Condition D. We have φµ
j = 1 on ω∗µj for all j = 1, . . . , Nµ for which ωµ

j ∩∂Ω 6= ∅.

The constants Cj , σ, and κ will be called structural constants. Note that we
must have Nµ →∞ as µ→∞.

The above assumptions are slightly weaker than the ones introduced in [11]. For
instance, Condition C implies the following propety (which is similar to Condition
C in [11])

For any w ∈ Ψµ
j , any 0 ≤ l ≤ m+ 1, and any ball ω∗ ⊂ ωµ

j of diameter ≥ σdµ
j .

(16) ‖w‖Hl(ωµ
j ) ≤ C‖w‖Hl(ω∗).

For further applications, we shall also need a variant of the spaces Sµ in which no
boundary conditions are imposed. Recall the functions qµ

j used to define the spaces
Ψµ

j . Let Ψ̃µ
j = Ψµ

j if ωj does not touch the boundary ∂Ω and Ψ̃µ
j = {p◦ (q̃µ

j )−1, p ∈
Pm} otherwise, (the difference is that we no longer require p to vanish when xn = 0).
We then define

(17) S̃µ :=
{ Nµ∑

j=1

φµ
j vj , vj ∈ Ψ̃µ

j

}
⊂ Hm(Ω).

We shall also need the following standard lemma, a proof of which, for s ∈ Z+,
can be found in [11]. For s ≥ 0 it is proved by interpolation.

Lemma 3.3. Let ψj be measurable functions defined on an open set W and s ≥ 0.
Assume that there exists an integer κ such that a point x ∈ W can belong to no
more than κ of the sets supp(ψj). Let f =

∑
j ψj. Then there exists a constant

C > 0, depending only on κ, such that ‖f‖2
Hs(W ) ≤ C

∑
j ‖ψj‖2

Hs(W ).

Recall that dµ
j denotes the diameter of ωµ

j . Let us observe that Condition A(hµ)
implies the following inverse inequality.
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Lemma 3.4. There exists C > 0, depending only on σ, such that

(18) ‖p‖Hs(ωµ
j ) ≤ C(dµ

j )r−s‖p‖Hr(ωµ
j ),

for all 0 ≤ r ≤ s ≤ m, all j, all µ, and all polynomials p of order m.

Proof. The proof of this lemma is inspired from the proof of (4.5.3) Lemma of [17].
Consider µ and 1 ≤ j ≤ Nµ arbitrary, but fixed for the moment. Let

ω̂µ
j := { 1

dµ
j

(x− xµ
j ), x ∈ ωµ

j }, ω̂∗µj := { 1
dµ

j

(x− xµ
j ), x ∈ ω∗µj },

where xµ
j is the center of the ball ω∗µj .

If p ∈ Pm is a polynomial of order m, then p̂ is defined by p̂(x̂) := p(dµ
j x̂ + xµ

j )
for all x̂. Observe that the set P̂m := {p̂ : p ∈ Pm} is nothing but the set of all
m-degree polynomials in x̂. Clearly,

(19) |p̂|Hk(ω̂µ
j ) = (dµ

j )k−n/2|p|Hk(ωµ
j ), for 0 ≤ k ≤ m.

We first prove (18) for the case r = 0. Since P̂m is finite dimensional, we have
by the equivalence of norms on the unit ball B(0, 1) that

(20) ‖p̂‖Hk(B(0,1)) ≤ C‖p̂‖L2(B(0,1)), for any 0 ≤ k ≤ m,

where C > 0 is a constant that does not depend on k, j, and µ. From Condition
A(hµ), we obtain that

(21) ‖p̂‖L2(B(0,1)) ≤ C‖p̂‖L2(ω̂∗µ
j )

where C > 0 depends only on the structural constant σ. From (20) and (21), it is
clear that

‖p̂‖Hk(ω̂µ
j ) ≤ C‖p̂‖L2(ω̂µ

j ) ∀p̂ ∈ P̂m,

where C > 0 depends only on σ. Therefore, (19) implies

|p|Hk(ωµ
j )(d

µ
j )k−n/2 ≤ C‖p‖L2(ωµ

j )(d
µ
j )−n/2 for 0 ≤ k ≤ s,

from which we deduce that

|p|Hk(ωµ
j ) ≤ C(dµ

j )−k‖p‖L2(ωµ
j ) for 0 ≤ k ≤ s.

Since dµ
j ≤ hµ ≤ 1, we have

(22) ‖p‖Hs(ωµ
j ) ≤ C(dµ

j )−s‖p‖L2(ωµ
j ),

which is just (18) for r = 0.
Let us now analyse the general case 0 ≤ r ≤ s ≤ m. For |α| = k, with s − r ≤

k ≤ s, Dαp = DβDγp for |β| = s− r and |γ| = k + r − s. Therefore,

‖Dαp‖L2(ωµ
j ) ≤ ‖Dγp‖Hs−r(ωµ

j )

≤ C(dµ
j )r−s‖Dγp‖L2(ωµ

j ) ( by (22))

≤ C(dµ
j )r−s|p|Hk+r−s(ωµ

j ).

Since
|p|Hk(ωµ

j ) :=
∑
|α|=k

‖Dαp‖L2(ωµ
j ),

we obtain that

|p|Hk(ωµ
j ) ≤ C(dµ

j )r−s|p|Hk+r−s(ωµ
j ) for s− r ≤ k ≤ s.
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This implies that

(23) |p|Hk(ωµ
j ) ≤ C(dµ

j )r−s‖p‖Hr(ωµ
j ) for s− r ≤ k ≤ s.

From (22), we also have

(24) ‖p‖Hs−r(ωµ
j ) ≤ C(dµ

j )r−s‖p‖L2(ωµ
j ) ≤ C(dµ

j )r−s‖p‖Hr(ωµ
j ).

Combining (23) and (24) gives (18) and this ends the proof of the lemma. �

4. Properties of the spaces Sµ

In this section, we establish some properties of the GFEM spaces Sµ, µ ∈ N,
defined in Equation (13) using the data Σµ = {ωµ

j , φ
µ
j ,Ψ

µ
j , ω

∗µ
j }Nµ

j=1 satisfying condi-
tions A(hµ), B, C, and D introduced in the previous section for hµ → 0. The main
result is that the sequence Sµ satisfies Assumptions 1 and 2 of the first section.

Hereafter, for simplicity, we will omit the index µ whenever its appearance is
implicit.

Let us fix j such that ωj∩∂Ω is not empty. Recall the functions gj , qj : Rn−1 → R
defined in the previous section. So, for h small, ωj∩∂Ω is contained in {(x′, gj(x′))},
the graph of the smooth function gj : Rn−1 → R (this may require a preliminary
rotation, which is not included in the notation, however, for the sake of simplicity).
Let q̃j : Rn → Rn be the bijective map defined by Equation (15). Similarly, let

(25) g̃j(x) = g̃j(x′, xn) = (x′, xn + gj(x′)).

Then g̃j maps Rn−1 to a surface containing ωj ∩ ∂Ω. We have g̃−1
j (x) = (x′, xn −

gj(x′)) and q̃−1
j (x) = (x′, xn − qj(x′)).

We shall need the following estimate.

Lemma 4.1. For any polynomial p of order m, we have

‖p ◦ g̃−1
j − p ◦ q̃−1

j ‖L2(ωj) ≤ Cdm+1
j ‖p‖H1(ωj) and

‖p ◦ g̃−1
j − p ◦ q̃−1

j ‖H1(ωj) ≤ Cdm
j ‖p‖H1(ωj),

where C is a constant independent of p, µ, and j.

Proof. By Taylor’s expansion theorem in the xn variable, we have

p ◦ g̃−1
j (x′, xn) = p(x′, xn − gj(x′)) = p(x′, xn)− gj(x′)∂np(x′, xn) + . . .

+ (−1)k gj(x′)k

k!
∂k

np(x
′, xn) + . . .+ (−1)m gj(x′)m

m!
∂m

n p(x
′, xn)

and

p ◦ q̃−1
j (x′, xn) = p(x′, xn − qj(x′)) = p(x′, xn)− qj(x′)∂np(x′, xn) + . . .

+ (−1)k qj(x
′)k

k!
∂k

np(x
′, xn) + . . .+ (−1)m qj(x′)m

m!
∂m

n p(x
′, xn).

Then,

|p ◦ g̃−1
j (x′, xn)− p ◦ q̃−1

j (x′, xn)| = |p(x′, xn − gj(x′))− p(x′, xn − qj(x′))|

≤ |gj(x′)− qj(x′)| · |∂np(x′, xn)|+ . . .+ |gj(x′)k − qj(x′)k

k!
| · |∂k

np(x
′, xn)|+ . . .

+ |gj(x′)m − qj(x′)m

m!
| · |∂m

n p(x
′, xn)|.



12 I BABUŠKA, V. NISTOR, AND N. TARFULEA

From this and the Cauchy–Schwartz inequality, we obtain

|p ◦ g̃−1
j (x′, xn)− p ◦ q̃−1

j (x′, xn)|2 = |p(x′, xn − gj(x′))− p(x′, xn − qj(x′))|2

≤ m[(gj(x′)− qj(x′))2∂np(x′, xn)2 + . . .+
(gj(x′)k − qj(x′)k)2

(k!)2
∂k

np(x
′, xn)2 + . . .

+
(gj(x′)m − qj(x′)m)2

(m!)2
∂m

n p(x
′, xn)2].

Notice that |gj(x′)| ≤ dj , for all (x′, xn) ∈ ωj , and because qj(x′) = gj(x′) +
O(dm+1

j ), for all (x′, xn) ∈ ωj , we have(
gj(x′)k−qj(x′)k

)2 = [gk
j (x′)−(gj(x′)+O(dm+1

j ))k]2 ≤ Cd
2(m+k)
j , for k = 1, . . . ,m,

which in turn implies that

|p ◦ g̃−1
j (x′, xn)− p ◦ q̃−1

j (x′, xn)|2 ≤ Cd
2(m+1)
j [∂np(x′, xn)2 + d2

j∂
2
np(x

′, xn)2 + . . .

+ d
2(k−1)
j ∂k

np(x
′, xn)2 + . . .+ d

2(m−1)
j ∂m

n p(x
′, xn)2].

By using the inverse inequality dk−1
j ‖p‖Hk(ωj) ≤ C‖p‖H1(ωj), we get

‖p ◦ g̃−1
j − p ◦ q̃−1

j ‖2
L2(ωj)

=
∫

ωj

|p ◦ g̃−1
j (x′, xn)− p ◦ q̃−1

j (x′, xn)|2dx′dxn

≤ Cd
2(m+1)
j

∫
ωj

[∂np(x′, xn)2 + d2
j∂

2
np(x

′, xn)2 + . . .+ d
2(k−1)
j ∂k

np(x
′, xn)2 + . . .

+ d
2(m−1)
j ∂m

n p(x
′, xn)2]dx′dxn

≤ Cd
2(m+1)
j [‖p‖2

H1(ωj)
+ . . .+ d

2(k−1)
j ‖p‖2

Hk(ωj)
+ . . .+ d

2(m−1)
j ‖p‖2

Hm(ωj)
]

≤ Cd
2(m+1)
j ‖p‖2

H1(ωj)
,

and this completes the proof of ‖p ◦ g̃−1
j − p ◦ q̃−1

j ‖L2(ωj) ≤ Cdm+1
j ‖p‖H1(ωj).

The proof of ‖p◦ g̃−1
j −p◦ q̃−1

j ‖H1(ωj) ≤ Cdm
j ‖p‖H1(ωj) is reduced to the previous

inequality as follows. First, from the inverse inequality dj‖p‖H1(ωj) ≤ C‖p‖L2(ωj),
we obtain

(26) ‖p ◦ g̃−1
j − p ◦ q̃−1

j ‖L2(ωj) ≤ Cdm
j ‖p‖L2(ωj).

It is then enough to show that

(27) ‖∂k(p ◦ g̃−1
j )− ∂k(p ◦ q̃−1

j )‖L2(ωj) ≤ Cdm
j ‖p‖H1(ωj),

for all k = 1, 2, . . . , n.
The case k = n is easier, so we shall treat only the case when 1 ≤ k ≤ n− 1. A

Taylor expansion with respect to the xn-variable gives

∂k(p ◦ g̃−1
j )(x′, xn) = ∂k(p(x′, xn − gj(x′)))

= (∂kp)(x′, xn − gj(x′))− ∂kgj(x′)(∂np)(x′, xn − gj(x′))

and

∂k(p ◦ q̃−1
j )(x′, xn) = ∂k(p(x′, xn − qj(x′)))

= (∂kp)(x′, xn − qj(x′))− ∂kqj(x′)(∂np)(x′, xn − qj(x′))
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Equation (27) then follows from Equation (26) and from the estimates qj(x′) =
gj(x′) + O(dm+1

j ), ∂kqj(x′) = ∂kgj(x′) + O(dm
j ) and |gj(x′)| ≤ dj for (x′, xn) ∈ ωj

(see Equation (14) and Condition C). �

Remark 4.2. Let us observe that Condition A(hµ) was used implicitly in the proof
of Lemma 4.1 when we used the inverse estimates dk−1

j ‖p‖Hk(ωj) ≤ C‖p‖H1(ωj).

Remark 4.3. If (14) is replaced by the more restrictive condition |∂α(gj − qj)| ≤
Cd

m+1−|α|
j , for all |α| ≤ m+1, then the result of the above lemma can be extended

as follows: For any polynomial p of order m, we have

‖p ◦ g̃−1
j − p ◦ q̃−1

j ‖Hs(ωj) ≤ Cdm+1−s
j ‖p‖H1(ωj), s = 0, . . . ,m+ 1,

where C is a constant independent of p, µ, j, and s.

Corollary 4.4. Let p ∈ Pm, then

‖φj

(
p ◦ g̃−1

j − p ◦ q̃−1
j

)
‖H1(ωj) ≤ Cdm

j ‖p‖H1(ωj).

If p ∈ Pm also vanishes on {xn = 0} then we have

‖φj(p ◦ q̃−1
j )‖H1/2(∂Ω) ≤ Cdm

j ‖p‖H1(ω∗j ).

Here C is a constant independent of p, µ, and j.

Proof. Using Lemma 4.1 and Assumption B, we obtain

‖φj

(
p ◦ g̃−1

j − p ◦ q̃−1
j

)
‖H1(ωj) ≤ ‖φj‖L∞(ωj)‖p ◦ g̃

−1
j − p ◦ q̃−1

j ‖H1(ωj)

+
(
Σn

i=1‖∂iφj‖L∞(ωj)

)
‖p ◦ g̃−1

j − p ◦ q̃−1
j ‖L2(ωj)

≤ Cdm
j ‖p‖H1(ωj) + Cd−1

j dm+1
j ‖p‖H1(ωj) ≤ Cdm

j ‖p‖H1(ωj).

The last part follows from the first part of this corollary, which we have already
proved, and from the fact that φj(p ◦ g̃−1

j ) = 0 on ∂Ω. Indeed,

‖φj(p ◦ q̃−1
j )‖H1/2(∂Ω) = ‖φj

(
p ◦ g̃−1

j − p ◦ q̃−1
j

)
‖H1/2(∂Ω)

≤ C‖φj

(
p ◦ g̃−1

j − p ◦ q̃−1
j

)
‖H1(Ω) = C‖φj

(
p ◦ g̃−1

j − p ◦ q̃−1
j

)
‖H1(ωj)

≤ Cdm
j ‖p‖H1(ωj) ≤ Cdm

j ‖p‖H1(ω∗j )

The proof is now complete. �

We are ready now to prove that Assumption 1 is satisfied by the sequence of
GFEM–spaces Sµ introduced in Subsection 3.2.

Proposition 4.5. Let Sµ be the sequence of GFEM–spaces defined by data Σµ

(Equation (12)) satisfying conditions A(hµ), B, C, and D. Then the sequence Sµ

satisfies Assumption 1.

Proof. Let wj ∈ Ψµ
j and w =

∑
φjwj ∈ Sµ. Since we are interested in evaluating w

at ∂Ω, we can assume that only the terms corresponding to j for which ωj ∩∂Ω 6= ∅
appear in the sum. Then wj = pj ◦ q̃−1

j , for some polynomials pj ∈ Pm vanishing
on {xn = 0}. Hence Lemma 3.3 and Corollary 4.4 give

‖w‖2
H1/2(∂Ω) ≤ C

∑
j

‖φjwj‖2
H1/2(∂Ω) ≤ C

∑
j

‖φj(pj ◦ q̃−1
j )‖2

H1/2(∂Ω)

≤ C
∑

j

d2m
j ‖pj‖2

H1(ω∗j ) ≤ Ch2m
µ

∑
j

‖pj‖2
H1(ω∗j ) ≤ Ch2m

µ

∑
j

‖wj‖2
H1(ω∗j ).
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By Condition D,
∑

j ‖wj‖2
H1(ω∗j ) = ‖w‖2

H1(∪ω∗j ). Therefore,

‖w‖2
H1/2(∂Ω) ≤ Ch2m

µ ‖w‖2
H1(∪ω∗j ) ≤ Ch2m

µ ‖w‖2
H1(Ω).

Assumption 1 is hence satisfied by taking square roots. �

Remark 4.6. Condition D is only needed in the proof of Proposition 4.5. Although
one can prove that

(28)
∑

j

‖wj‖2
H1(ω∗j ) ≤ C‖w‖2

H1(Ω)

(by using norm equivalence in finite dimensional spaces), one can not bypass Con-
dition D because the constant C in (28) depends on µ. To remove this dependence,
one would have to impose additional and/or different conditions on the partition
of unity.

The proof that the sequence Sµ also satisfies Assumption 2 is also based on
the above lemma and on the following result. Recall that the local approximation
spaces Ψj and Ψ̃µ

j were defined in Subsection 3.2.

Lemma 4.7. Let u ∈ Hm+1(ωj). Then there exists a polynomial w ∈ Ψ̃µ
j such

that ‖u − w‖H1(ωj) ≤ Cdm
j ‖u‖Hm+1(ωj) and ‖u − w‖L2(ωj) ≤ Cdm+1

j ‖u‖Hm+1(ωj)

for a constant C independent of u, µ, and j. If u = 0 on ωj ∩ ∂Ω, then we can
chose w ∈ Ψµ

j .

Proof. We are especially interested in the case when u = 0 on ωj ∩ ∂Ω, so we shall
deal with this case in detail. The other one is proved in exactly the same way.

Let us consider v = u ◦ g̃j . Since g̃j maps Rn−1 = {xn = 0} to a surface
containing ωj ∩ ∂Ω, we obtain that v = 0 on Rn−1. For hµ small enough, we can
assume that g̃−1

j (ωj) lies on one side of Rn−1. Let U be the union of the closure of
g̃−1

j (ωj) and of its symmetric subset with respect to Rn−1. Define v1 ∈ H1(U) to
be the odd extension of v (odd with respect to the reflection about the subspace
Rn−1). Let p1 be the projection of v1 onto the subspace Pm of polynomials of
degree m on U . This projection maps even functions to even functions and odd
functions to odd functions. Hence p1 is also odd. In particular, p1 = 0 on Rn−1.
We also know from standard approximation results [17] that

‖v1 − p1‖H1(U) ≤ Cdm
j ‖v1‖Hm+1(U).

Then

‖u− p1 ◦ g̃−1
j ‖H1(ωj) ≤ C‖v1 − p1‖H1(U) ≤ Cdm

j ‖v1‖Hm+1(U) ≤ Cdm
j ‖u‖Hm+1(ωj).

Let w = p1 ◦ q̃−1
j . The lemma follows from

‖u− w‖H1(ωj) ≤ ‖u− p1 ◦ g̃−1
j ‖H1(ωj) + ‖p1 ◦ g̃−1

j − p1 ◦ q̃−1
j ‖H1(ωj)

≤ Cdm
j ‖u‖Hm+1(ωj) + Cdm

j ‖p1‖H1(ωj) ≤ Cdm
j ‖u‖Hm+1(ωj),

where we have used also Lemma 4.1.
To prove the relation ‖u − w‖L2(ωj) ≤ Cdm+1

j ‖u‖Hm+1(ωj), we first notice that
Poincaré’s inequality gives

‖v1 − p1‖L2(U) ≤ Cdj‖v1 − p1‖H1(U) ≤ Cdm+1
j ‖v1‖Hm+1(U).

The rest is exactly the same. �
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We are ready now to prove Assumption 2. See [5], section 6.1, and [11] for related
results.

Proposition 4.8. The sequence of GFEM spaces Sµ satisfies Assumption 2.

Proof. We proceed as in [11], Theorem 3.2. Let u ∈ Hm+1(Ω). If ωj does not
intersect ∂Ω, we define wj ∈ Ψj = Pm to be the orthogonal projection of u onto Pm

in H1(ωj). Otherwise, we define wj ∈ Ψj using Lemma 4.7. Then let w =
∑

j φjwj .
By using Lemma 4.7, the definition of the local approximation spaces Ψj (Condition
C), and the bounds on ‖∇φj‖L∞ (Condition B), we obtain

|u− w|H1(Ω) =
∣∣∑

j

φj(u− wj)
∣∣
H1(Ω)

≤
∑

j

(
‖φj‖L∞ |u− wj |H1(ωj) + ‖∇φj‖L∞‖u− wj‖L2(ωj)

)
≤
∑

j

(
Cdm

j ‖u‖Hm+1(ωj) + Cd−1
j dm+1

j ‖u‖Hm+1(ωj)

)
≤ Cκhm

µ ‖u‖Hm+1(Ω).

This completes the result. �

5. Non-homogeneous boundary conditions

In this section we provide an approach to the non-homogeneous Dirichlet bound-
ary conditions. That is, consider the boundary value problem.

(29)

{
−∆u = f on Ω,
u = g on ∂Ω.

Our approach it to reduce again to the case g = 0 and then to use the results on
the homogeneous Dirichlet problem (1). In a purely theoretical framework, this is
achieved using an extension G of g and then solving the problem −∆w = f + ∆G,
w = 0 on ∂Ω. The solution of (29) will then be u = w + G. This gives that
the problem (29) has a unique solution u ∈ Hp+1(Ω) for any f ∈ Hp−1(Ω) and
g ∈ H1/2+p(∂Ω) and it satisfies

‖u‖Hp+1(Ω) ≤ C
(
‖f‖Hp−1(Ω) + ‖g‖H1/2+p(∂Ω)

)
,

for a constant C > 0 that depends only on Ω and p ∈ Z+. (This result is valid also
for p = 0.)

In practice, however, we need to slightly modify this approach since it is not
practical to construct the extension G (this is especially a problem if g has low
regularity, that is, if g is a distribution, for instance). We will be looking therefore
for a sequence Gk of approximate extensions of g.

The construction of such a sequence of approximate extension as well as the
analysis of the resulting method are the main results of this section. Other methods
for constructing Gk are certainly possible. We begin with an axiomatic approach,
postulating the existence of the sequence Gk, k ∈ N. Let 1 ≤ p ≤ m. We consider
a sequence Gk satisfying the following assumption. Recall that the spaces S̃k ⊃ Sk

were defined in Equation (17) and are variants of the spaces Sk that are not required
to satisfy, even approximately, the boundary conditions.

Assumption 3 (approximate extensions). We assume that there exists a
constant C > 0 such that, for any g ∈ Hm+1/2(∂Ω), there exists a sequence
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Gk ∈ S̃k such that ‖Gk|∂Ω − g‖H1/2(∂Ω) ≤ Chm
k ‖g‖Hm+1/2(∂Ω) and ‖Gk‖Hm+1(Ω) ≤

C‖g‖Hm+1/2(∂Ω).

We now check that it is possible to choose Gk ∈ S̃k satisfying Assumption 3.
Indeed, this is the case since Assumption 3 is satisfied if the other assumptions and
conditions are satisfied. We follow the method in [4].

Proposition 5.1. There exist continuous linear maps Ik : Hm+1(Ω) → S̃k, such
that

(30) |u− Ik(u)|Hr(Ω) ≤ Chm+1−r
k ‖u‖Hm+1(Ω),

for r = 0 and r = 1.

Proof. For u ∈ Hm+1(Ω) and j fixed, let v = u ◦ g̃j . The Taylor polynomial of
degree m of v averaged over g̃−1(ωj) is given by

(31) Pj(x) := Qm
j v(x) =

∫
g̃−1(ωj)

Qy,v,n(x)Φj(y) dy,

where

Qy,v,n(x) = v(y)+
n∑

i=1

∂iv(y)(xi−yi)+. . .+
∑
|α|=m

v(α)(y)
α!

(x−y)α, α! = α1! . . . αn!,

is the Taylor polynomial of v at y of degree m and Φj ∈ C∞c (g̃−1(ωj)) is a function
with integral 1. Then, by the Bramble–Hilbert Lemma, we have

(32) |v − Pj |Hs(g̃−1(ωj)) ≤ Chm+1−s
k |v|Hm+1(g̃−1(ωj)), for all 0 ≤ s ≤ m+ 1.

Consider wj := Pj ◦ q̃−1
j ∈ Ψ̃j . Let w :=

∑
j φjwj . Then,

(33) |u− w|2Hr(Ω) ≤ C
∑

j

|φj(u− w)|2Hr(Ω) ≤ C
∑

j

|φj(u− w)|2Hr(ωj)

≤ C
∑

j

r∑
i=0

|φj |2W i,∞(ωj)
|u− wj |2Hr−i(ωj)

≤ C
∑

j

r∑
i=0

|φj |2W i,∞(ωj)
[|u− Pj ◦ g̃−1

j |2Hr−i(ωj)
+ |Pj ◦ g̃−1

j − Pj ◦ q̃−1
j |2Hr−i(ωj)

].

By changing variables and (32), we obtain

(34)
|u− Pj ◦ g̃−1

j |2Hr−i(ωj)
= |v ◦ g̃−1

j − Pj ◦ g̃−1
j |2Hr−i(ωj)

≤ C|v − Pj |2Hr−i(g̃−1
j (ωj))

≤ Ch
2(m+1−r+i)
k |v|2Hm+1(g̃−1(ωj))

= Ch
2(m+1−r+i)
k |u ◦ g̃j |2Hm+1(g̃−1(ωj))

≤ Ch
2(m+1−r+i)
k |u|2Hm+1(ωj)

.

Also, from Lemma 4.1 and the definition (31) of Pj , we have

(35) |Pj ◦ g̃−1
j − Pj ◦ q̃−1

j |2Hr−i(ωj)
≤ Ch

2(m+1−r+i)
k ‖Pj‖2

H1(ωj)

≤ Ch
2(m+1−r+i)
k ‖u‖Hm+1(ωj).
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From (33), (34), (35), and Condition B, it follows that

(36)

|u− w|2Hr(Ω) ≤ C
∑

j

r∑
i=0

h−2i
k [h2(m+1−r+i)

k |u|2Hm+1(ωj)
+ h

2(m+1−r+i)
k ‖u‖2

H1(ωj)
]

≤ Ch
2(m+1−r)
k

∑
j

‖u‖2
Hm+1(ωj)

≤ Cκh
2(m+1−r)
k ‖u‖2

Hm+1(Ω),

for all 0 ≤ r ≤ m+ 1.
Define Ik(u) := w. Clearly Ik is a linear map from Hm+1(Ω) to S̃k which satisfies

(30). This ends the proof of the proposition. �

Remark 5.2. If we assume the stronger condition stated in Remark 4.3 on the m-
degree polynomial qj , then the conclusion of Proposition 5.1 is valid for 0 ≤ r ≤
m+ 1 (the proof being exactly the same).

From this proposition we obtain right away the Assumption 3.

Proposition 5.3. For any g ∈ Hm+1/2(∂Ω) there exists a sequence Gk ∈ S̃k

satisfying Assumption 3.

Proof. Let us chose G ∈ Hm+1(Ω) extending g, ‖G‖Hm+1(Ω) ≤ C‖g‖Hm+1/2(∂Ω),
with C independent of g. Then choose Gk = Ik(G), with Ik as in Proposition
5.1. �

Let wk be the solution of

(37) −∆wk = f + ∆Gk on Ω, wk = 0 on ∂Ω.

Also, let (wk)µ ∈ Sµ be the discrete solutions of this equation, namely, the
solution of the discrete, variational problem

(38) B((wk)µ, v) = (f + ∆Gk, v)L2(Ω), v ∈ Sµ,

where f ∈ Hm−1(Ω) is the data of Equation (29).
The main result of this section is the following theorem.

Theorem 5.4. Suppose Assumptions 1 and 2 and Conditions A(hµ), B, C, and
D are satisfied. Let uk := (wk)k + Gk ∈ S̃k. Then there exists a constant C > 0
such that the solution u ∈ Hm+1(Ω) of Equation (29) satisfies

‖u− uk‖H1(Ω) ≤ Chm
k

(
‖f‖Hm−1(Ω) + ‖g‖Hm+1/2(∂Ω)

)
.

Proof. We have that vk := wk +Gk solves the boundary value problem

−∆vk = f on Ω, vk = Gk on ∂Ω.

Hence the difference u − vk solve the boundary value problem ∆(u − vk) = 0,
(u− vk) = g −Gk on ∂Ω. From this and Assumption 3 we obtain

(39) ‖u− vk‖H1(Ω) ≤ C‖g −Gk‖H1/2(∂Ω) ≤ Chm
k ‖g‖Hm+1/2(∂Ω).

Theorem 1.1 and Assumption 3, which is satisfied by Proposition 5.3, then give

‖vk − uk‖H1(Ω) = ‖wk − (wk)k‖H1(Ω) ≤ Chm
k ‖f + ∆Gk‖Hm−1(Ω)

≤ Chm
k

(
‖f‖Hm−1(Ω) + ‖Gk‖Hm+1(Ω)

)
≤ Chm

k

(
‖f‖Hm−1(Ω) + ‖g‖Hm+1/2(∂Ω)

)
.
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Hence

(40) ‖vk − uk‖H1(Ω) = ‖wk − (wk)k‖H1(Ω) ≤ Chm
k

(
‖f‖Hm−1(Ω) + ‖g‖Hm+1/2(∂Ω)

)
.

The result follows from Equations (39) and (40). �

6. Conclusions and comments and further work

We now summarize our main results and compare them with those of Berger,
Scott, and Strang [12] and Nitsche [28]. We also discuss the mixed Dirichlet-
Neumann problem and suggest some further work.

6.1. Conclusions. Let Sµ, µ ∈ N, be the GFEM spaces associated to the “flat-
top” data Σµ = {ωµ

j , φ
µ
j ,Ψ

µ
j , ω

∗µ
j }Nµ

j=1 as in Subsection 3.2. In particular, they
satisfy the conditions A(hµ), B, C, and D, for a fixed set of structural constants
A, Cj , σ, and κ and hµ → 0. (The parameters hµ are the sizes of the patches ωj .)
We know from [11] that it is always possible to find a sequence like that, because
Ω is smooth.

Let uµ ∈ Sµ be the discrete solution of the Dirichlet problem (1) (i.e., −∆u = f ,
u = 0 on the boundary of the smooth, bounded domain Ω). That is, uµ is given by
Equation (2). Then we have

Theorem 6.1. The sequence Sµ satisfies the Assumptions 1 and 2 and hence

‖u− uµ‖H1(Ω) ≤ Chm
µ ‖u‖Hm+1(Ω),

where C > 0 is a constant that is independent of µ and f ∈ Hm−1(Ω).

We therefore obtain quasi-optimal rates of convergence for our approximate so-
lutions uµ ∈ Sµ, in the sense that the error estimate has the same order as the best
approximation in the spaces Sµ.

The definition of the discrete solution uµ is as in [12]. In that paper, Berger,
Scott, and Strang obtain for m > 3/2 the estimate
(41)

‖u− uµ‖H1(Ω) ≤ C

(
inf

ξ∈Sµ

‖u− ξ‖H1(Ω) + ‖u− uµ‖Hm(Ω) sup
0 6=v∈Sµ

‖v‖H3/2−m(Ω)

‖v‖H1(Ω)

)
.

Our result is thus an extension of the result of [12] to the case m = 1, to which the
methods of that paper do not seem to apply. The case m > 3/2 seems not to be
enough to provide optimal rates of convergence directly.

The definition of the discrete solution uh ∈ Sh in Nitsche’s paper [28] is such
that (∆uh + f, vh) = 0 for all vh ∈ Sh, so it is different from ours. In addition to
our approximability assumption (Assumption 1), in [28], Nitsche also requires an
approximation property at the boundary and ‖u‖H1(∂Ω) ≤ Ch−γ‖u‖H1(Ω) instead
of our Assumption 2. These assumptions, slightly stronger than ours, also lead to
optimal rates of convergence.

As in the isoparametric methods, our method uses polynomial approximations
of the boundary. However, we do not have to use non-polynomial approximation
functions of non-polynomial changes of coordinates.
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6.2. Mixed boundary value problems. Let us comment now a little on the
mixed boundary value problem:

(42) −∆u = f in Ω, u = 0 on ∂DΩ, and
∂u

∂n
= 0 on ∂NΩ,

where ∂Ω is the disjoint union of the closed subsets ∂DΩ and ∂NΩ. In particular,
both ∂DΩ and ∂NΩ will be closed surfaces. In case ∂DΩ is empty (the Neumann
problem), we require our approximation spaces Sµ to be such that

∫
Ω
vµ(x)dx = 0

for all vµ ∈ Sµ.
Then our results remain the same if we consider the following variant of our

Assumptions 1 and 2, in which ∂Ω was replaced with ∂DΩ.

• Assumption 1m: ‖vµ‖H1/2(∂DΩ) ≤ Chm
µ ‖vµ‖H1(Ω) for any vµ ∈ Sµ, and

• Assumption 2m: for any u ∈ Hj+1(Ω), 0 ≤ j ≤ m, u = 0 on ∂DΩ, there
exists uI ∈ Sµ such that |u− uI |H1(Ω) ≤ Chj

µ‖u‖Hj+1(Ω).

The definition of discrete solution uµ is the same as before: uµ ∈ S̃µ is such that

(43) (∇(u− uµ),∇vµ) = 0, for all vµ ∈ S̃µ.

An inspection of our arguments used in the proof of Proposition 4.8 shows that,
if only Conditions A(hµ) and B are satisfied, then we can take Sµ = {uµ ∈
S̃µ,

∫
Ω
uµ(x)dx = 0}. The analog of Theorem 1.1 then follows as before.

Theorem 6.2. The (unique) solutions u and uµ of Equations (42) and (43), re-
spectively, with f ∈ Hp−1(Ω) satisfy

‖u− uµ‖H1(Ω) ≤ Chp
µ‖u‖Hp+1(Ω) ≤ Chp

µ‖f‖Hp−1(Ω),

for constants independent of µ and f .

Let us observe that for the mixed Dirichlet-Neumann boundary conditions, Con-
ditions C and D can be weakend by replacing ∂Ω with ∂DΩ. Thus, in the case of
pure Neumann boundary condition case, Conditions C and D are not required.
However, in the analysis of elliptic boundary-value problems with mixed Dirichlet
and Neumann boundary conditions, the Conditions C and D have to be considered
only for the indices j corresponding to the patches ωj that touch the portion of the
boundary on which the Dirichlet boundary conditions are imposed. See [4, 5, 11]
and references therein for more information on meshless methods for Neumann
boundary conditions.

6.3. Further problems. In spite of all these differences in assumptions and defi-
nitions between [12, 28] and our paper, the main issue seems to be providing simple
examples of spaces satisfying the various assumptions used in these papers. For
instance, it would be interesting to provide other examples of spaces Sµ satisfy-
ing Assumptions 1 and 2. It would also be interesting to see if a modification of
the uniform partition of unity can give, by restriction, spaces Sµ satisfying these
Assumptions. Finally, it would be important to integrate our results with the is-
sues arising from numerical integration and to provide explicit numerical examples
testing our results.

Some numerical tests and related theoretical results can be found, for example,
in [7] and [21].
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[5] I. Babuška, U. Banerjee, and J.E. Osborn, Survey of meshless and generalized finite element

methods: A unified approach, Acta Numerica, pp. 1-125, 2003.
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